
Thermochrmrca Acra, 68 ( 1983) 317-327 

Elsevier Science Publishers B.V., Amsterdam ~ Prmted in The Netherlands 
317 

HEAT TRANSFER IN A DISC-TYPE DSC APPARATUS. III. 
THEORETICAL AND EXPERIMENTAL CORRECTION OF THE 
CALORIMETRIC SIGNAL IN SCANNING MODE 

P. CLAUDY, J.C. COMMERCON * and J.M LETOFFE 

Lahorarorre de Thermochrmre Ml&rule de I’I..V.S.A. Assocrt~ uu C..Y R S. %LO /IO. It~srrrur 

Natronal des Scrences AppllquPes de L.vorl, 6W1 V~lleurhw~t~e Cede-y (Francej 

(Recetved 6 Apr11 1983) 

ABSTRACT 

A mathemattcal treatment of the calorimetric signal for a disc-type DSC apparatus IS 
given. The method rehes upon an electrical representatton of the DSC Instrument. Several 
applications are given: melting of high purity and less pure mdmm with determtnatton of 
purtty. determination of the thermal gradient m the cructble. 

INTRODUCTION 

It has been shown in previous papers [1.2] that a disc-type DSC apparatus 
behaves like a coupled cell calorimeter. Heat transfer between the sample 
and reference crucibles occurs by conduction through the disc and the gas. 
Using the electrical analogy, a quantitative model has been obtained. 

The signal, A, given by a calorimeter at time t, depends on the thermal 
effect actually occurring in the sample crucible and on the previous state of 
the calorimeter at t < I,. 

Thermochemistry has established relations relating the temperature of the 
sample with other parameters, e.g. dissociation pressure, composition and 
melted fraction. 

Determination of the purity of a sample by DSC has been the focus of 
much attention: according to several hypotheses [4], a simple relation exists 
between the purity of the sample, the fraction melted and temperature. 
Although many papers have been written on this subject, they mostly deal 
with a supposed behavior of the sample itself [6] or with empirical correc- 
tions of the calorimetric signal [7-91. It has been pointed out [IO] that the 
purity found depends heavily on the type of apparatus used, and hence. on 
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its constitution. To our knowledge, attempts made to 
calorimeter itself [l l] used the electrical model of 
calorimeter. 

take into account the 
a Calvet-type micro- 

Using the electrical model described in [2], it seemed possible to compute 
estimates of the true temperature and thermal effect, and to use these data 
for purity determination. 

DISC-TYPE DSC 

Model used 

A reasonable model of a Mettler DSC apparatus is given in Fig. 1. E is the 
temperature of the furnace (tension generator) and + is the thermal effect 
occurring in the sample (intensity generator). 

In a previous paper [3], the sample crucible contact resistor was not taken 
into consideration. It was however observed that this resistor could influence 
the shape of the calorimetric signal. The resistor, R,, is thus taken into 
account [ 12,131. 

Fig. 1. Electrical representation of the calorimeter in the scanning mode. R,, Furnace-crucr- 
ble resistor for the heat flowing through the disc; R,, crucible-crucible resistor for the heat 

flowmg through the disc; R,, contact disc-crucible resistor; R,, furnace-crucrble resistor 

through the gas; R,, crucible-crucible resistor through the gas; R,. contact resistor sample 
crucible; C,,heat capacity of the crucible containmg the sample; C,, heat capacity of the 
reference crucible; C,, heat capacity of the disc below the sample: C,, heat capacrty of the 
disc below reference crucible; C,, heat capacity of the sample. Temperatures: U,, sample 
crucible; U,. reference crucible; U,, disc below the sample; U,. reference; U,, sample. 
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Hypotheses 

The hypotheses made were as given below. 
a Thermal dissymmetry is represented by different disc capacitors. 
b Every thermal resistor and capacitor is independent of the temperature 

in the narrow temperature range studied. Numerical values of the resistors 
have been found by an isothermal method [3]. 

THEORETICAL REPRESENTATION OF A DSC IN SCANNING MODE 

Equations 

Equations describing the temperature and the calorimetric signal 
temperature with heat evolution C#I in the sample are represented in 
notation by 

~J=AU+BE+C+ 

E and C#I are the inputs of the system. From Fig. (1) it follows that 
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The calorimetric signal A is given by 

A = g(u, - 4) 

with g = sensitivity of the thermocouples (pV K-‘) [3] 

Equations with discrete measurements 

In the experiments only sampled measurements are available at a period 
T. However, it is possible, with discrete data to reconstitute a continuous 
signal with particular input. The equation of a system has the form 

i/= AU+ B’E’ (8) 

and the solution depends on the input E’. 

Constant inputs 
If the inputs E’ were constant during the sampling period, the solution of 

eqn. (8) is given by eqn. (9), such that 

U (rc+I)T = exp[(T)A]U,,+ BiELT (9) 

with 

B; = A-‘{exp[( T) A] - Z}B’ (10) 

where Z = identity matrix and U,, is the temperature matrix at time t. 
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E as a linear function of time 
In the scanning mode, the temperature of the furnace is a linear function 

of time. It is easily shown that the solution of eqn. (8) is now given by 

U (k+ I)T = exp[(T)A]U,,+B,E;r+ B,&+,,, (11) 

with 

B, = [K,{exp[(r)a] -I}- (+)A-,{K,(exp[(T)A] -I)- *}iB’ (12) 

and 

B, = $A-‘[A-,{exp[( T)A] -I> - T] B’ (13) 

General equation 
No information is available on + during the sampling period. $ depends 

only on the thermal effect occurring in the sample. It is assumed that the 
sampling period is short enough and it follows that a constant or linear 
interpolation between two consecutive measurements gives a small error in 
the solution. It is to be noted that this is the only approximation made. The 
choice between linear or constant interpolation is made on the basis of the 
simplicity and stability of the results and is discussed later. 

The equation taking into account the thermal effect in the scanning mode 
is derived from eqn. (l), (9) and (11). 

Q+,)T= exPkowkT+ B,J%T+ w(,+,,T+ c,+,, (14) 

with 

C, =A-‘{exp[(T)A] -1}C (15) 

DECONVOLUTION METHOD 

With the numerical values of the resistors and capacitors, numerical 
values of A, B,, B, and C, can be obtained. The first equation of system (14) 
is given by 

(u, - u,),k+,,T= a&-+- b;EL-.+b;E(L+,,.+ c;& (16) 

where a, b;, 6; and ci are the first line of the matrices exp[( T) A], B,, B, and 
C,, respectively. 

UJ - U, is obtained directly as experimental data from eqn. (7). E,, and 
E ck+ ,jT are the temperatures of the furnace at kT and (k + l)T. They are 
easily obtained since the heating rate, the temperature at the beginning of 
the experiment, E,, and the time elapsed are experimental quantities. CJL, 
represents the state of the calorimeter at kT. At t -c 0, the calorimeter being 
at a constant temperature E,, it follows that U3 - U, = 0, U, = U2 = U, = Us 
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= E,, and $I = 0. The iterative procedure starts with k = 0. The heat flow, 4, 
is computed from eqn. (17) which is a simple modification of eqn. (18) 

since (U, - Q)(L+I,T, L/kT, EkT, Eck+I,T are known. 

oii=$W ci,),,+,,,-aL;,,-b;E,,-b;E~,+,,,] (17) 

The numerical value of 4kT and the state U( kT) are then used in eqn. ( 14) 
to compute UcA+ ,jT and the same procedure is repeated with every value of 
U, - U,. With this procedure, 4 and U, vs. time are obtained. The distortion 
of the signal, A, inherent in the apparatus is then removed on the basis of 
our hypotheses as stated previously [2]. 

DISCUSSION 

Model 

Figure 1 shows a localized system. It is of course a simplified representa- 
tion of the real calorimeter, which has distributed resistors and capacitors. 
However, it has been shown [3] that this model is sufficiently accurate. It is 
very easy to make the model more complex, but it does not appear to be 
needed. 

Heat flow 

No information on the evolution of 4 is available. It seems reasonable to 
suppose that its change is slow during the sampling period. A linear 
interpolation could be used with a modified form of eqn. (14) i.e. 

U(k+UT= exPKm4~k.+ BlEkT+ wqk+l)T+ G4m+ C34(k+l)T (18) 

B, and B, are found in eqns. ( 12) and ( 13). C, and C, have the same 
equation as B, and B, where C is substituted for B. However, the inverse 
filter [a straightforward modification of eqn. (S)] may be unstable and its 
stabilization could damage the simplicity of the actual result without giving 
more useful information on 4. 

EXPERIMENTAL 

Material 

A Mettler TA 2000 B DSC apparatus was used. The calorimetric signal 
was read by a H.P. 3455 A digital voltmeter controlled by a H.P. 85 
computer. Data were stored and used off-line. 
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Experimental conditions 

Experiments were made in the temperature range 14%163°C with a 
heating rate of 1°C min- ‘. The calorimeter was set at a constant tempera- 
ture (148°C) and when the signal was constant. ten measurements were 
made and the temperature was increased. The sampling period was 3 s. The 
indium used was of a high purity grade: 99.9999%. purchased from Preussag. 

Experiments have shown that the In sample must be a foil covering the 
bottom of the crucible. When In wires were used. the curve Q vs. furnace 
temperature showed discontinuities. The reference crucible contained 
platinum wires. 

RESULTS 

Several experiments were performed with indium. They were designed to 
test the practical use and the limits of confidence in the model. 

Melting of pure rrldium (Preussag 99. WY9 % ) 

There is no direct means of evaluating R,. C, and C,. since R, depends on 
the material itself and since C? and C, represent, on the basis of our 

hypotheses, every discrepancy between the model and the real calorimeter. 
In order to obtain these values. a trial-and-error method was used. 

Figure 2 shows plots of: calorimetric signal (100 ~LV full scale) vs. furnace 
temperature, E (“C); thermal power, + (mW). vs. E; thermal power. +, vs. 
sample temperature, Us; quantity of heat. q = C’,,+dT. vs. Us: and tempera- 
ture of the sample, r/,. vs. l/F. F is the fraction melted: 
Q = heat of melting of the sample. The purity of the indium 
by the slope of 

F = q/Q where 
sample is given 

0; = x 
RT2 1 

3 - - T,, 
2AH,, F 

The adjustment process is as described. Resistors R,-R, and C,. C, and g 
are given in ref. (3). An arbitrary value of R, was taken and a first 
computation was made. Then, C, - C, was adlusted so as to obtain no shift 
of the base line in the plot + = f(E). Then R, was changed: if R, was too 
large, then the computed temperature of In decreased during the melting 
which is of course impossible. If R, was too small, Us = f( l/F) was not a 
straight line. Decreasing C, and C, created an overshoot of the end of the 
peak + = f( U,). 

Finally, the correct values are C, = 72 mJK- ‘. C, = 57 mJK_ ’ and 
R, = 2 X 10e3 K mW-‘. As expected. R, is quite small. The purity was 
found to be 1.05 x 10e6. 
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Fig. 2. Deconvolution of the meltmg of a pure indlum sample (WI = 40.34 mg). _. A = f(E); 
1.~=f(E);2.~=f(L/‘,);3,q=C~,~At;4.l/F=f(L/,). 

Illfluence of the sample-cm&de resistor 

In order to get more information on the influence of this resistor aluminium 
foil was inserted between the bottom of the crucible and the indium sample 
foil. The experiment was run as described previously. 

The shape of the calorimetric signal was very different: the rising slope of 
the peak was smaller than in the foregoing experiment and the computed 
melting temperature with the values of pure In is 0.2”C greater. When _ 
deconvolution was carried out using 
except for R, = 21 x lop3 K mW_‘, 
purity x = 1.7 X lop6 were obtained. 

the numerical values used previously, 
the same melting temperature and the 

Thermal gradierlt in the crucrhle 

Two small pieces of indium (about 5 mg each) were placed in the crucible. 
One was as close as possible to the furnace, and the other as close as possible 
to the center of the disc. 

Figure 3 shows the calorimetric signal vs. furnace temperature and the 
thermal effect vs. sample temperature. Two sharp peaks are clearly seen 
which represent the melting of each piece of indium. The thermal gradient in 
the crucible is then O.l”C at the heating rate used (1°C min-‘). 

This experiment suggests why indium foil has to be used. Instead of 
increasing the complexity of the model to represent the thermal gradient in 
the crucible, it seems more reasonable to use a slightly different sample 
arrangement. 
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1 * i 158 T (“Cl 163 

Fig. 3. Determination of the thermal gradient in the crucible. Mass of indium = 9.33 mg. . , 
A = f(E); 1, + = f(E); 2, 9 = f(U,). 

Purity of In sample 

In order to check the deconvolution method, a purity test on common 
grade indium was carried out. The results are reported in Fig. 4. From the 
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Fig. 4. Purity determination of an In sample (m = 35.99 mg). , A = f(E); I, + = f(E); 2. 
+ = f(Q); 3, q = C;+Ar; 4, l/F= f(Q). 
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shape of the calorimetric signal, it is clear that this sample is less pure than 
the sample used in the earlier experiments. Using the same value of R, = 2 x 

lop3 K mW_‘, the impurity content was found to be x = 3.7 x lo-‘. The 
curve T = f( l/F) is very close to a straight line. 

DISCUSSION 

In these experiments, the computed heat of melting corresponds to the 
quantity of indium used. It has, however, to be mentioned that the values of 
C, and C, may vary. This can be seen as a consequence of the model chosen 
since a thermal dissymmetry of the furnace is seen as being due to dif- 
ferences in these capacitors. 

Change in the value of R, ( k 50%) does not noticeably affect the shape of 
+ = f( U,) but slight1 y changes the purity found. 

The theoretical curve + = f(Q) should be a line and it is seen that the end 
of the peak is not a straight line. The resultant effect on the heat q = f( Us) is 
not visible. The falling part of the peak contains only three points and U5 
varies very rapidly. 

CONCLUSION 

In this paper, a mathematical treatment of the calorimetric signal in the 
scanning mode has been given. Examples reported here are limited to a 
narrow temperature range and to the melting of indium. The technique 
developed here eliminates most of the apparatus response in spite of the 
simplicity of the model: (i) a discrete and simple model is used to represent a 
continuous system; (ii) a quite straightforward deconvolution method is 
used. 

A compromise between model complexity and experimental requirements 
has been made and seems to be satisfactory. 

Application of these results to the widely used purity method gives 
straight lines for the plot T= f( l/F) and allows the determination of 
impurities as traces. 
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